Thursday 11 May 2017

Einfache Bewegungs Durchschnitt Varianz


Erforschung der exponentiell gewichteten beweglichen durchschnittlichen Volatilität ist die häufigste Maßnahme des Risikos, aber es kommt in mehreren Geschmacksrichtungen. In einem früheren Artikel haben wir gezeigt, wie man einfache historische Volatilität berechnet. (Um diesen Artikel zu lesen, siehe Volatilität verwenden, um zukünftiges Risiko zu beurteilen.) Wir haben Googles aktuelle Aktienkursdaten verwendet, um die tägliche Volatilität auf der Grundlage von 30 Tagen Lagerbestand zu berechnen. In diesem Artikel werden wir die einfache Volatilität verbessern und den exponentiell gewichteten gleitenden Durchschnitt (EWMA) diskutieren. Historische Vs. Implizite Volatilität Zuerst können wir diese Metrik in ein bisschen Perspektive bringen. Es gibt zwei breite Ansätze: historische und implizite (oder implizite) Volatilität. Der historische Ansatz geht davon aus, dass Vergangenheit Prolog ist, messen wir die Geschichte in der Hoffnung, dass es prädiktiv ist. Implizite Volatilität hingegen ignoriert die Geschichte, die sie für die Volatilität der Marktpreise löst. Es hofft, dass der Markt am besten weiß und dass der Marktpreis, auch wenn implizit, eine Konsensschätzung der Volatilität enthält. (Für verwandte Lesung siehe die Verwendungen und Grenzen der Volatilität.) Wenn wir uns nur auf die drei historischen Ansätze konzentrieren (links oben), haben sie zwei Schritte gemeinsam: Berechnen Sie die Reihe der periodischen Renditen Bewerben Sie ein Gewichtungsschema Zuerst haben wir Berechnen Sie die periodische Rückkehr. Das ist typischerweise eine Reihe von täglichen Renditen, bei denen jede Rückkehr in kontinuierlich zusammengesetzten Begriffen ausgedrückt wird. Für jeden Tag nehmen wir das natürliche Protokoll des Verhältnisses der Aktienkurse (d. h. der Preis heute geteilt durch den Preis gestern und so weiter). Dies führt zu einer Reihe von täglichen Renditen, von u i zu u i-m. Je nachdem wie viele Tage (m Tage) wir messen. Das bringt uns zum zweiten Schritt: Hier unterscheiden sich die drei Ansätze. In dem vorherigen Artikel (mit Volatility To Gauge Future Risk), haben wir gezeigt, dass unter ein paar akzeptablen Vereinfachungen, die einfache Varianz ist der Durchschnitt der quadrierten Renditen: Beachten Sie, dass dies summiert jede der periodischen Renditen, dann teilt diese Summe durch die Anzahl der Tage oder Beobachtungen (m). Also, es ist wirklich nur ein Durchschnitt der quadratischen periodischen Rückkehr. Setzen Sie einen anderen Weg, jede quadratische Rückkehr wird ein gleiches Gewicht gegeben. Wenn also Alpha (a) ein Gewichtungsfaktor ist (speziell 1 m), dann sieht eine einfache Varianz so aus: Die EWMA verbessert sich auf einfache Abweichung Die Schwäche dieses Ansatzes ist, dass alle Renditen das gleiche Gewicht verdienen. Gestern (sehr neuere) Rückkehr hat keinen Einfluss mehr auf die Varianz als die letzten Monate zurück. Dieses Problem wird durch die Verwendung des exponentiell gewichteten gleitenden Durchschnitts (EWMA) behoben, bei dem neuere Renditen ein größeres Gewicht auf die Varianz haben. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) führt Lambda ein. Der als Glättungsparameter bezeichnet wird. Lambda muss kleiner als eins sein. Unter dieser Bedingung wird anstelle von gleichen Gewichten jede quadrierte Rendite mit einem Multiplikator wie folgt gewichtet: Zum Beispiel neigt RiskMetrics TM, ein Finanzrisikomanagement-Unternehmen, dazu, ein Lambda von 0,94 oder 94 zu verwenden. In diesem Fall ist das erste ( (1 - 0,94) (94) 0 6. Die nächste quadratische Rückkehr ist einfach ein Lambda-Vielfaches des vorherigen Gewichts in diesem Fall 6 multipliziert mit 94 5,64. Und das dritte vorherige Tagegewicht ist gleich (1-0,94) (0,94) 2 5,30. Das ist die Bedeutung von Exponential in EWMA: jedes Gewicht ist ein konstanter Multiplikator (d. h. Lambda, der kleiner als eins sein muss) des vorherigen Tagegewichts. Dies stellt eine Varianz sicher, die gewichtet oder voreingenommen auf neuere Daten ist. (Um mehr zu erfahren, schau dir das Excel-Arbeitsblatt für Googles-Volatilität an.) Der Unterschied zwischen einfacher Volatilität und EWMA für Google ist unten dargestellt. Die einfache Volatilität wirkt effektiv jede periodische Rendite um 0,196, wie in Spalte O gezeigt (wir hatten zwei Jahre täglich Kursdaten, das sind 509 tägliche Renditen und 1509 0,196). Aber beachten Sie, dass Spalte P ein Gewicht von 6, dann 5.64, dann 5.3 und so weiter zuteilt. Das ist der einzige Unterschied zwischen einfacher Varianz und EWMA. Denken Sie daran: Nachdem wir die ganze Serie (in Spalte Q) zusammengefasst haben, haben wir die Varianz, die das Quadrat der Standardabweichung ist. Wenn wir Volatilität wollen, müssen wir uns daran erinnern, die Quadratwurzel dieser Varianz zu nehmen. Was ist der Unterschied in der täglichen Volatilität zwischen der Varianz und EWMA im Googles-Fall Sein signifikant: Die einfache Varianz gab uns eine tägliche Volatilität von 2,4, aber die EWMA gab eine tägliche Volatilität von nur 1,4 (siehe die Kalkulationstabelle für Details). Anscheinend hat sich die Googles-Volatilität in jüngster Zeit niedergelassen, eine einfache Varianz könnte künstlich hoch sein. Heutige Varianz ist eine Funktion von Pior Days Variance Youll bemerken wir brauchten, um eine lange Reihe von exponentiell abnehmenden Gewichten zu berechnen. Wir werden die Mathematik hier nicht machen, aber eines der besten Features der EWMA ist, dass die ganze Serie bequem auf eine rekursive Formel reduziert: Rekursive bedeutet, dass heutige Varianzreferenzen (d. h. eine Funktion der vorherigen Tagesabweichung) ist. Sie finden diese Formel auch in der Kalkulationstabelle, und sie erzeugt genau das gleiche Ergebnis wie die Langzeitberechnung Es heißt: Die heutige Varianz (unter EWMA) ist gleichbedeutend mit der vulkanischen Varianz (gewichtet durch Lambda) plus gestern quadrierte Rückkehr (gewogen von einem Minus Lambda). Beachten Sie, wie wir nur zwei Begriffe zusammenfügen: gestern gewichtete Varianz und gestern gewichtet, quadratische Rückkehr. Dennoch ist Lambda unser Glättungsparameter. Ein höheres Lambda (z. B. RiskMetrics 94) zeigt einen langsamen Abfall in der Serie an - in relativer Hinsicht werden wir mehr Datenpunkte in der Serie haben und sie werden langsamer abfallen. Auf der anderen Seite, wenn wir das Lambda reduzieren, zeigen wir einen höheren Zerfall an: die Gewichte fallen schneller ab, und als direkte Folge des schnellen Zerfalls werden weniger Datenpunkte verwendet. (In der Kalkulationstabelle ist Lambda ein Eingang, also kannst du mit seiner Empfindlichkeit experimentieren). Zusammenfassung Volatilität ist die momentane Standardabweichung eines Bestandes und die häufigste Risikometrität. Es ist auch die Quadratwurzel der Varianz. Wir können die Abweichung historisch oder implizit (implizite Volatilität) messen. Wenn man historisch misst, ist die einfachste Methode eine einfache Varianz. Aber die Schwäche mit einfacher Abweichung ist, dass alle Renditen das gleiche Gewicht bekommen. So stehen wir vor einem klassischen Kompromiss: Wir wollen immer mehr Daten, aber je mehr Daten wir haben, desto mehr wird unsere Berechnung durch entfernte (weniger relevante) Daten verdünnt. Der exponentiell gewichtete gleitende Durchschnitt (EWMA) verbessert die einfache Varianz durch die Zuordnung von Gewichten zu den periodischen Renditen. Auf diese Weise können wir beide eine große Stichprobengröße verwenden, aber auch ein größeres Gewicht auf neuere Renditen geben. (Um ein Filmtutorium zu diesem Thema zu sehen, besuchen Sie die Bionische Schildkröte.) Artikel 50 ist eine Verhandlungs - und Vergleichsklausel im EU-Vertrag, in der die Schritte für jedes Land skizziert werden. Beta ist ein Maß für die Volatilität oder das systematische Risiko eines Wertpapiers oder eines Portfolios im Vergleich zum Gesamtmarkt. Eine Art von Steuern, die auf Kapitalgewinne von Einzelpersonen und Kapitalgesellschaften angefallen sind. Kapitalgewinne sind die Gewinne, die ein Investor ist. Ein Auftrag, eine Sicherheit bei oder unter einem bestimmten Preis zu erwerben. Ein Kauflimitauftrag erlaubt es Händlern und Anlegern zu spezifizieren. Eine IRS-Regel (Internal Revenue Service), die strafrechtliche Abhebungen von einem IRA-Konto ermöglicht. Die Regel verlangt das. Der erste Verkauf von Aktien von einem privaten Unternehmen an die Öffentlichkeit. IPOs werden häufig von kleineren, jüngeren Unternehmen ausgestellt, die das. Portfolio VaR Value at Risk ausführen, ist ein Maß für den Worst-Case-Verlust, der über eine bestimmte Haltedauer für eine gegebene Wahrscheinlichkeit auftreten kann. Es ist eine Maßnahme, die weitgehend verwendet wird, um das Marktrisiko zu beurteilen, das mit einer bestimmten Anlage oder einem Portfolio von Investitionen verbunden ist. Portfolio VaR EXCEL Beispiel ist ein detailliertes Berechnungsblatt, das die Berechnung des VaR für ein Portfolio von sechs Instrumenten mit 3 Devisentermingeschäften (EUR, AUD und JPY) und drei Rohstoffen (WTI, Gold und Silber) veranschaulicht. Vor der Berechnung des VaR für das Portfolio wird die Metrik für jedes Instrument innerhalb des Portfolios unter Verwendung des Simple Moving Average Variance Kovarianzansatzes und des Historical Simulation Approach berechnet. Es zeigt, wie ein Graph von Trailing Volatilities konstruiert wird und die Berechnung einer groben Schätzung der VaR-Nummer unter Verwendung der maximalen Volatilität aus dieser nachlaufenden Volatilitätsreihe. Die historische Simulationsmethode wird auch mit dem EXCELs Data Analysis Tool für Histogramme veranschaulicht, angewendet auf die tägliche Rückgabeserie für jede der Währungen sowie für das Portfolio. Die Ableitung von Portfolio VaR für Varianz-Kovarianz-Ansatz erfolgt nach der traditionellen Varianz - und Kovarianzmatrix-Methode sowie einer Abkürzung durch die Berechnung einer gewichteten durchschnittlichen Rendite-Serie für das Portfolio. Die Datentabelle Funktionalität von EXCEL wird verwendet, um die 10-Tage-Holding VaR für unterschiedliche Quoten zu berechnen (wie durch das verwendete Konfidenzniveau gegeben). Schauen Sie sich unsere Finanz-Kurs-Shop für mehr Kurse auf der Value-at-Risk-Konzept. Im Einzelnen: Verwandte Beiträge: Über den Autor Jawwad Farid Jawwad Farid baut und implementiert seit August 1998 Risikomodelle und Backoffice-Systeme. Mit Kunden auf vier Kontinenten hilft er Bankern, Vorstandsmitgliedern und Regulierungsbehörden einen marktrelevanten Ansatz für das Risikomanagement ein . Er ist der Autor von Models at Work und Option Greeks Primer, beide veröffentlicht von Palgrave Macmillan. Jawwad ist eine Fellow Society of Actuaries, (FSA, Schaumburg, IL), er hält einen MBA von der Columbia Business School und ist ein Informatik-Absolvent aus (NUSS SCHNELL). Er ist Mitglied des SP Jain Global School of Management in Dubai und Singapur, wo er unter anderem Risikomanagement, Derivative Pricing und Entrepreneurship unterrichtet. Ein Gedanke auf ldquoPortfolio VaRrdquo Kommentare sind geschlossen. Portfolio VaR Varianz Kovarianz Ansatz mit der Short Cut Technik PROOF Varianz CoVariance VaR Shortcut Ansatz Portfolio VaR ist eine sehr wichtige Maßnahme zur Bewertung des Marktrisikos, das dem gesamten Portfolio eines Unternehmens innewohnt. Es ist eine Maßnahme, deren Berechnung oft mit Herzbrand verbunden ist, weil der Risikomanager die sehr arbeitsintensive Konstruktion der Varianzkovarianzmatrix vorsieht. In unseren Kursen über Value at Risk, Berechnung des Value at Risk amp Portfolio VaR. Wir schlagen eine Abhilfe vor, die dem Benutzer ein gewisses Maß an Komfort bieten sollte - ein Short-Cut-Ansatz, der von den Columbia University Business Schools Professor Mark Broadie eingeführt wurde. Auf die Matrix mit einer gewichteten durchschnittlichen Reihe von Portfolio-Renditen. Allerdings ist es die menschliche Natur zu fragen, ein Ärzte Rezept, um eine zweite Meinung zu suchen, und weve hatte eine Reihe von Leuten fragen uns für den Nachweis, ob unsere kurzfristig effizientere, praktische und bequeme Version der Berechnung Portfolio VaR wirklich gibt das Portfolio VaR Abgeleitet mit der traditionellen Varianz-Kovarianzmatrix. Oder waren die Ergebnisse einfach zufällig, mathematische Magie per se Der PROOF liegt in der sehr vertrauten statistischen Gleichung: Varianz (aXbY) a 2 Varianz (X) b 2 Varianz (Y) 2abKovarianz (X, Y) Die Quadratwurzel der Varianz ist Standardabweichung, die, wie Sie wissen, in Value at Risk Terminologie ist Volatilität, das Gebäude der Simple Moving Average Variance Kovarianz (SMA VCV) Ansatz zur Berechnung der Metrik. Die traditionelle Varianz-Kovarianz-Ansatzmethode verwendet den Aufbau der berüchtigten Varianz-Kovarianzmatrix, die in statistischer Gleichung mit der rechten Seite (RHS) der obigen Gleichung bezeichnet wird - ein Konglomerat von quadratischen Gewichten, einzelne Asset-Rückkehr-Varianzen und Kovarianzen zwischen Paaren von Variablen. Unser Short-Cut-Ansatz konzentriert sich auf die oft vergessene linke Seite (LHS) der Gleichung, d. h. die Abweichung der gewichteten durchschnittlichen Summe der Variablen. Wenn die gewichtete durchschnittliche Summe der Variablen, aXbY Z dann alles, was wir brauchen, ist die Abweichung von Z. In Bezug auf die Wert-at-Risiko-Berechnung sind die Variablen die tägliche Rendite-Serie für jeden Asset im Portfolio die gewichtete durchschnittliche Summe der Variablen, dh Z , Ist die gewichtete durchschnittliche Summe der täglichen Rendite-Serie Z ist daher die Portfolio-Return-Serie. Und daher, indem wir die Varianz von Z berechnen, die gewichtete tägliche Rendite-Reihe, quadratisches Wurzeln des Ergebnisses und die Anwendung des entsprechenden Multiplikatorfaktors, der das Konfidenzniveau und die Halteperiode repräsentiert, gelangen wir zu dem einfachen gleitenden Durchschnittsvarianz-Kovarianz-VaR-Ergebnis. Niedrig und sehen den Beweis für unsere Short-Cut-Ansatz ist wirklich gleich der SMA VCV VaR mit der traditionellen Varianz Kovarianz Methodik. Es ist jedoch zu beachten, dass bei der Anwendung der EXCEL-Funktionen von VAR () und COVAR () zur Abrechnung der Abweichungen und Kovarianz ein geringfügiger Unterschied in den Ergebnissen der traditionellen und effizienten Methoden besteht. Der Fehler liegt bei der traditionellen Vorgehensweise, da zwischen den Varianten - und Kovarianz-Formeln, die den EXCEL-Funktionen zugrunde liegen, eine Inkonsistenz besteht. Die COVAR () - Formel in EXCEL verwendet eine Stichprobengröße von n im Divisor, während VAR () eine Stichprobengröße von n-1 verwendet. Eine einfache Einstellung kann an COVAR () vor der Verwendung in der RHS der obigen Gleichung vorgenommen werden, um diese Diskrepanz zu beseitigen, insbesondere: Adjusted COVAR () COVAR () n (n-1). Alternativ können wir anstelle der oben angegebenen RHS folgendes verwenden: a 2 Variance (X) b 2 Varianz (Y) 2abKorrelation (X, Y) StandardDeviation (X) StandardDeviation (Y) Rückruf statistisch Korrelation (X, Y) Kovarianz ( X, Y) StandardDeviation (X) StandardDeviation (Y) In EXCEL wird die CORREL () - Funktion wie folgt gegeben: Dies setzt implizit die Konsistenz zwischen den Varianz - und Kovarianzformeln voraus, wie die Divisoren von jedem auslöschen. Die Verwendung von CORREL () anstelle von COVAR () beseitigt die Diskrepanz zwischen den Ergebnissen, die mit dem traditionellen Ansatz für SMA VCV Value-at-Risk gewonnen wurden, und die Ergebnisse, die mit dem Short-Cut-Ansatz abgeleitet wurden. Verwandte Beiträge: 2.1 Verschieben von durchschnittlichen Modellen (MA-Modelle) Zeitreihenmodelle, die als ARIMA-Modelle bekannt sind, können autoregressive Begriffe und gleitende durchschnittliche Ausdrücke enthalten. In Woche 1 lernten wir einen autoregressiven Begriff in einem Zeitreihenmodell für die Variable x t ist ein verzögerter Wert von x t. Zum Beispiel ist ein lag 1 autoregressiver Term x t-1 (multipliziert mit einem Koeffizienten). Diese Lektion definiert gleitende durchschnittliche Begriffe. Ein gleitender Durchschnittsterm in einem Zeitreihenmodell ist ein vergangener Fehler (multipliziert mit einem Koeffizienten). Lassen Sie (nt N (0, sigma2w)), was bedeutet, dass die wt identisch, unabhängig verteilt sind, jeweils mit einer Normalverteilung mit dem Mittelwert 0 und der gleichen Varianz. Das mit MA (1) bezeichnete 1-stufige gleitende Durchschnittsmodell ist (xt mu wt theta1w) Das durchschnittliche Modell der 2. Ordnung, das mit MA (2) bezeichnet wird, ist (xt mu wt theta1w theta2w) , Bezeichnet mit MA (q) ist (xt mu wt theta1w theta2w dots thetaqw) Hinweis. Viele Lehrbücher und Softwareprogramme definieren das Modell mit negativen Vorzeichen vor den Bedingungen. Dies ändert nicht die allgemeinen theoretischen Eigenschaften des Modells, obwohl es die algebraischen Zeichen der geschätzten Koeffizientenwerte und (unsquared) Terme in Formeln für ACFs und Abweichungen klappt. Sie müssen Ihre Software überprüfen, um zu überprüfen, ob negative oder positive Zeichen verwendet wurden, um das geschätzte Modell korrekt zu schreiben. R verwendet positive Zeichen in seinem zugrunde liegenden Modell, wie wir hier tun. Theoretische Eigenschaften einer Zeitreihe mit einem MA (1) Modell Beachten Sie, dass der einzige Wert ungleich Null im theoretischen ACF für Verzögerung 1 ist. Alle anderen Autokorrelationen sind 0. Somit ist ein Beispiel ACF mit einer signifikanten Autokorrelation nur bei Verzögerung 1 ein Indikator für ein mögliches MA (1) Modell. Für interessierte Schüler sind die Beweise dieser Eigenschaften ein Anhang zu diesem Handzettel. Beispiel 1 Angenommen, ein MA (1) - Modell ist x t 10 wt .7 w t-1. Wo (wt Overset N (0,1)). So ist der Koeffizient 1 0,7. Die theoretische ACF ist gegeben durch eine Handlung dieses ACF folgt. Die gerade dargestellte Handlung ist die theoretische ACF für eine MA (1) mit 1 0,7. In der Praxis wird eine Probe gewöhnlich ein solches klares Muster liefern. Unter Verwendung von R simulierten wir n 100 Abtastwerte unter Verwendung des Modells x t 10 w t .7 w t-1, wobei w t iid N (0,1). Für diese Simulation folgt eine Zeitreihenfolge der Stichprobendaten. Wir können nicht viel von dieser Handlung erzählen. Die Stichprobe ACF für die simulierten Daten folgt. Wir sehen eine Spike bei Verzögerung 1, gefolgt von allgemein nicht signifikanten Werten für die Vergangenheit 1. Beachten Sie, dass die Stichprobe ACF nicht mit dem theoretischen Muster des zugrundeliegenden MA (1) übereinstimmt, was bedeutet, dass alle Autokorrelationen für Verzögerungen nach 1 0 sind Eine andere Probe hätte eine etwas andere Probe ACF, die unten gezeigt wird, würde aber wahrscheinlich die gleichen breiten Merkmale haben. Theroretische Eigenschaften einer Zeitreihe mit einem MA (2) Modell Für das MA (2) Modell sind die theoretischen Eigenschaften die folgenden: Beachten Sie, dass die einzigen Werte ungleich Null im theoretischen ACF für die Verzögerungen 1 und 2 sind. Autokorrelationen für höhere Verzögerungen sind 0 So gibt ein Beispiel ACF mit signifikanten Autokorrelationen bei den Verzögerungen 1 und 2, aber nicht signifikante Autokorrelationen für höhere Verzögerungen ein mögliches MA (2) - Modell an. Iid N (0,1). Die Koeffizienten sind 1 0,5 und 2 0,3. Da es sich hierbei um ein MA (2) handelt, hat die theoretische ACF nur Nullwerte nur bei den Verzögerungen 1 und 2. Werte der beiden Nicht-Null-Autokorrelationen sind eine Auftragung der theoretischen ACF folgt. Wie fast immer der Fall ist, verhalten sich die Probendaten nicht ganz so perfekt wie die Theorie. Wir simulierten n 150 Probenwerte für das Modell x t 10 w t .5 w t-1 .3 w t-2. Wo w t iid N (0,1). Die Zeitreihenfolge der Daten folgt. Wie bei der Zeitreihen-Plot für die MA (1) Beispieldaten können Sie nicht viel davon erzählen. Die Stichprobe ACF für die simulierten Daten folgt. Das Muster ist typisch für Situationen, in denen ein MA (2) Modell nützlich sein kann. Es gibt zwei statistisch signifikante Spikes bei den Verzögerungen 1 und 2, gefolgt von nicht signifikanten Werten für andere Verzögerungen. Beachten Sie, dass die Stichprobe ACF aufgrund des Stichprobenfehlers nicht genau mit dem theoretischen Muster übereinstimmt. ACF für allgemeine MA (q) Modelle Eine Eigenschaft von MA (q) - Modellen im Allgemeinen ist, dass es für die ersten q-Verzögerungen und Autokorrelationen 0 für alle Verzögerungen gt q ungleichen Autokorrelationen gibt. Nicht-Eindeutigkeit der Verbindung zwischen den Werten von 1 und (rho1) in MA (1) Modell. Im MA (1) Modell, für jeden Wert von 1. Die reziproke 1 1 gibt den gleichen Wert für Als Beispiel, verwenden Sie 0,5 für 1. Und dann 1 (0,5) 2 für 1 verwenden. Youll bekommen (rho1) 0,4 in beiden Fällen. Um eine theoretische Einschränkung zu erfüllen, die Invertierbarkeit genannt wird. Wir beschränken die MA (1) - Modelle auf Werte mit einem absoluten Wert kleiner als 1. In dem gerade angegebenen Beispiel ist 1 0,5 ein zulässiger Parameterwert, wohingegen 1 10,5 2 nicht. Invertierbarkeit von MA-Modellen Ein MA-Modell soll invertierbar sein, wenn es algebraisch äquivalent zu einem konvergierenden unendlichen Ordnungs-AR-Modell ist. Durch konvergieren, verstehen wir, dass die AR-Koeffizienten auf 0 abnehmen, wenn wir uns in der Zeit zurückziehen. Invertierbarkeit ist eine Beschränkung, die in die Zeitreihen-Software programmiert ist, die verwendet wird, um die Koeffizienten von Modellen mit MA-Terme abzuschätzen. Es ist nicht etwas, das wir in der Datenanalyse überprüfen. Zusätzliche Informationen über die Invertierbarkeitsbeschränkung für MA (1) Modelle finden Sie im Anhang. Fortgeschrittene Theorie Hinweis. Für ein MA (q) Modell mit einem bestimmten ACF gibt es nur ein invertierbares Modell. Die notwendige Bedingung für die Invertierbarkeit ist, daß die Koeffizienten Werte haben, so daß die Gleichung 1- 1 y - ist. - q y q 0 hat Lösungen für y, die außerhalb des Einheitskreises liegen. R-Code für die Beispiele In Beispiel 1 haben wir die theoretische ACF des Modells x t 10 w t aufgetragen. 7w t-1 Und dann simuliert n 150 Werte aus diesem Modell und plotted die Probe Zeitreihen und die Probe ACF für die simulierten Daten. Die R-Befehle, die verwendet wurden, um das theoretische ACF zu zeichnen, waren: acfma1ARMAacf (mac (0,7), lag. max10) 10 Verzögerungen von ACF für MA (1) mit theta1 0,7 lags0: 10 erzeugt eine Variable namens Lags, die von 0 bis 10 reicht (1) mit theta1 0,7) abline (h0) fügt eine horizontale Achse zum Plot hinzu Der erste Befehl bestimmt den ACF und speichert ihn in einem Objekt Benannte acfma1 (unsere auswahl des namens). Der Plotbefehl (der 3. Befehl) zeichnet sich gegen die ACF-Werte für die Verzögerungen 1 bis 10 aus. Der ylab-Parameter markiert die y-Achse und der Hauptparameter setzt einen Titel auf den Plot. Um die numerischen Werte des ACF zu sehen, benutzen Sie einfach den Befehl acfma1. Die Simulation und die Plots wurden mit den folgenden Befehlen durchgeführt. Xcarima. sim (n150, list (mac (0.7))) simuliert n 150 Werte aus MA (1) xxc10 fügt 10 hinzu, um Mittel zu machen 10. Simulation standardmäßig 0. plot (x, typeb, mainSimulated MA (1) data) Acf (x, xlimc (1,10), mainACF für simulierte Probendaten) In Beispiel 2 wurden die theoretischen ACF des Modells xt 10 Gew .-% w t-1 .3 w t-2 aufgetragen. Und dann simuliert n 150 Werte aus diesem Modell und plotted die Probe Zeitreihen und die Probe ACF für die simulierten Daten. Die verwendeten R-Befehle waren acfma2ARMAacf (mac (0,5,0,3), lag. max10) acfma2 lags0: 10 plot (Verzögerungen, acfma2, xlimc (1,10), ylabr, typeh, Haupt-ACF für MA (2) mit theta1 0,5, Thex20.3) abline (h0) xcarima. sim (n150, list (mac (0.5, 0.3))) xxc10 plot (x, typeb, main simulierte MA (2) Serie) acf (x, xlimc (1,10), MainACF für simulierte MA (2) Daten) Anhang: Nachweis der Eigenschaften von MA (1) Für interessierte Studierende sind hier Beispiele für theoretische Eigenschaften des MA (1) Modells. Abweichung: (Text (xt) Text (mu wt theta1 w) 0 Text (wt) Text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) Wenn h 1, der vorherige Ausdruck 1 w 2. Für irgendwelche h 2 ist der vorherige Ausdruck 0 Der Grund dafür ist, dass durch die Definition der Unabhängigkeit der Gew. E (w k w j) 0 für jedes k j Da ferner wt den Mittelwert 0, E (w j w j) E (w j 2) w 2 hat. Für eine Zeitreihe, Wenden Sie dieses Ergebnis an, um das oben angegebene ACF zu erhalten. Ein invertierbares MA-Modell ist eines, das als ein unendliches Ordnungs-AR-Modell geschrieben werden kann, das konvergiert, so dass die AR-Koeffizienten zu 0 konvergieren, wenn wir uns unendlich zurück in der Zeit bewegen. Nun zeigen Sie die Invertierbarkeit für das Modell MA (1). Dann ersetzen wir die Beziehung (2) für w t-1 in Gleichung (1) (3) (zt wt theta1 (z - θaw) wt theta1z - θ2w) Zur Zeit t-2. Gleichung (2) wird wir dann die Beziehung (4) für wt-2 in Gleichung (3) (zt wt theta1z-tha21w wt theta1z - tha21 (z-tha1w) wt theta1z - θ12z theta31w) Wenn wir fortfahren würden ( Unendlich), würden wir die unendliche Ordnung AR-Modell erhalten (zt wt theta1 z - theta21z theta31z - theta41z Punkte) Beachten Sie jedoch, dass bei 1 1 die Koeffizienten, die die Verzögerungen von z multiplizieren, in der Größe zunehmen wird (unendlich), wenn wir uns zurück bewegen Zeit. Um dies zu verhindern, brauchen wir 1 lt1. Dies ist die Voraussetzung für ein invertierbares MA (1) Modell. Infinite Order MA Modell In Woche 3 sehen wir, dass ein AR (1) Modell in eine unendliche Reihenfolge umgewandelt werden kann MA Modell: (xt-mu wt phi1w phi21w punkte phik1 w Punkte Summe phij1w) Diese Summierung von vergangenen weißen Rauschen ist bekannt Als die kausale Darstellung eines AR (1). Mit anderen Worten, x t ist eine spezielle Art von MA mit einer unendlichen Anzahl von Begriffen, die in der Zeit zurückgehen. Dies wird als unendliche Ordnung MA oder MA () bezeichnet. Eine endliche Ordnung MA ist eine unendliche Ordnung AR und jede endliche Ordnung AR ist eine unendliche Ordnung MA. Rückruf in Woche 1, stellten wir fest, dass eine Voraussetzung für eine stationäre AR (1) ist, dass 1 lt1. Lets berechnen die Var (x t) mit der Kausaldarstellung. Dieser letzte Schritt verwendet eine grundlegende Tatsache über geometrische Reihen, die (Phi1lt1) ansonsten die Reihe divergiert. Navigation

No comments:

Post a Comment